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Although pioneered by human geneticists as a potential
solution to the challenging problem of finding the genetic
basis of common human diseases1,2, advances in genotyp-
ing and sequencing technology have made genome-wide
association (GWA) studies an obvious general approach
for studying the genetics of natural variation and traits
of agricultural importance. They are particularly use-
ful when inbred lines are available because once these
lines have been genotyped, they can be phenotyped mul-
tiple times, making it possible (as well as extremely cost-
effective) to study many different traits in many different
environments, while replicating the phenotypic measure-
ments to reduce environmental noise. Here we demon-
strate the power of this approach by carrying out a GWA
study of 107 phenotypes in Arabidopsis thaliana, a widely
distributed, predominantly selfing model plant, known
to harbor considerable genetic variation for many adap-
tively important traits3. Our results are dramatically dif-
ferent from those of human GWA studies in that we iden-
tify many common alleles with major effect, but they are
also, in many cases, harder to interpret because confound-
ing by complex genetics and population structure make it
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difficult to distinguish true from false associations. How-
ever, a priori candidates are significantly overrepresented
among these associations as well, making many of them
excellent candidates for follow-up experiments by the Ara-
bidopsis community. Our study clearly demonstrates the
feasibility of GWA studies in A. thaliana, and suggests that
the approach will be appropriate for many other organ-
isms.

The genotyped sample (Supplementary Table 1) includes a
core set of 95 lines4 for which a wide variety of phenotypes
were available, plus a second set of 96 for which many phe-
notypes related to flowering were available5. The lines were
genotyped using a custom Affymetrix SNP-chip containing
250,000 SNPs6. Since the genome of A. thaliana is around
120 million bp and the extent of LD comparable to that in
humans7,8, the resulting SNP density of one SNP per 500 bp
is considerably higher than is commonly used in human stud-
ies6.

To evaluate the feasibility of GWA studies in this organ-
ism, a variety of phenotypes were generated or assembled.
The phenotypes broadly fell into four categories: 23 were re-
lated to flowering under different environmental conditions;
23 were related to defense, ranging from recognition of spe-
cific bacterial strains to trichome density; 18 were element
concentrations measured using inductively coupled plasma
mass spectroscopy (“ionomics”); and 43 were loosely defined
developmental traits, including dormancy and plant senes-
cence. For details about each phenotype, see Supplementary
Tables 2–5. The flowering phenotypes are generally strongly
positively correlated, and are also negatively correlated with
some other phenotypes, e.g., those related to size at flowering
(see Supplementary Fig. 9).

We first assessed evidence of association between each
SNP and phenotype using the non-parametric Wilcoxon Test
(Fisher’s Exact Test was used for the small number of pheno-
types that were categorical rather than quantitative). A ma-
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Figure 1 – The number of associations identified using different p-value thresholds for each phenotype. For each phenotype, the
numbers of distinct peaks of association significant at nominal p-value thresholds of 10−4, 10−5, . . . , 10−9 are shown. The number of
SNPs (out of 250,000) that would be expected to exceed each threshold is shown for comparison. a, No correction for population structure
(non-parametric Wilcoxon Test). b, Correction for population structure (parametric mixed model [EMMA]).

jor difference between our study and the human GWA stud-
ies published to date is that our study population is heavily
structured, and there is thus every reason to expect elevated
false-positive rates9. Indeed, most phenotypes gave rise to
a distribution of p-values that was strongly skewed toward
zero (Supplementary Section 2.1.6). Fig. 1a shows the num-
ber of distinct peaks of association identified for each pheno-
type using different p-value thresholds, as well as the number
expected by chance alone. There is an excess of strong as-
sociations across phenotypes, as expected given the presence
of confounding population structure (although we also expect
some of these associations to be true). Furthermore, the de-
gree of confounding varies greatly between phenotypes. Phe-
notypes related to flowering are generally more strongly af-
fected, as would be expected given the correlation between
flowering and geographic origins.

The population structure in our sample is highly complex,
involving patterns of relatedness on all scales (see Supple-
mentary Fig. 4). As in previous studies9, we found that, at
least in terms of producing a p-value distribution that does
not show obvious signs of confounding, statistical meth-
ods commonly used to control for population structure in
human genetics10,11 fail to correct for population structure,
whereas the mixed-model approach introduced by maize ge-
neticists12 appears to perform well (see Supplementary Sec-
tion 2.1.6). Fig. 1b shows the number of peaks of associ-
ation identified using this approach (as implemented in the
program EMMA13). The excess of nominally significant as-
sociation for flowering-related phenotypes has been elimi-
nated, as would be expected if this excess were mostly due
to confounding by population structure. There is a marked

reduction in the number of associations of moderate signifi-
cance (e.g., around 10−4) across phenotypes, but the excess
of highly significant associations clearly persists (or has even
become greater). This is precisely what would be expected
from an increase in statistical power by switching to a para-
metric method that reduces confounding. It is tempting to
conclude that most of these extreme p-values must repre-
sent true associations, but there are reasons to be skeptical.
First, although EMMA appears to produce a p-value distribu-
tion that conforms to the null-expectation (except for extreme
values: see Supplementary Figs. 12–118), it seems almost
certain that some confounding remains (see below). Sec-
ond, simulation studies suggest that the p-values produced
by EMMA are not always well estimated and should be in-
terpreted with caution (see Supplementary Section 2.1.5).

It is thus not straightforward to distinguish true from spu-
rious associations, regardless of whether we correct for pop-
ulation structure. There is no doubt, however, that there is
real signal in the data. Indeed, regardless of method used,
six phenotypes yield single, strong peaks of association that
are obvious by eye. In all cases, the association results effec-
tively identify single genes, and correspond to known func-
tional polymorphisms. An example of this is shown in Fig. 2,
where the hypersensitive response to the bacterial avirulence
gene AvrRpm1 directly identifies the corresponding resistance
gene RESISTANCE TO P. SYRINGAE PV MACULICOLA 1
(RPM1)14. Similar results were obtained for other disease re-
sistance (R) responses, sodium concentration, lesioning, and
FRIGIDA (FRI) expression (see Supplementary Figs. 35, 37,
60, 76, and 21, respectively).

More generally, SNPs closely linked to genes that are a
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Figure 2 – GWA analysis of hypersensitive response to the bac-
terial elicitor AvrRpm1. a, Genome-wide p-values from Fisher’s
Exact Test. The horizontal dashed line corresponds to a nominal 5%
significance-threshold with Bonferroni-correction for 250,000 tests.
b, Magnification of the genomic region surrounding RPM1, the po-
sition (and extent) of which is indicated by the vertical blue line.
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priori likely to be responsible for a particular phenotype are
significantly over-represented among SNPs associated with
that phenotype. For many of the phenotypes analyzed it is
possible to predict which genes might be important in natural
variation based on existing functional knowledge. For these
phenotypes we determined which of our SNPs were located
within 20 kb of an a priori candidate, and tested whether
these SNPs were over-represented among nominally signif-
icant associations. Fig. 3 illustrates the procedure for flower-
ing time at 10°C (FT10). For example, SNPs with a p-value
less than 10−3 from EMMA and a p-value less than 10−5

from the Wilcoxon test are 2.7 times more likely to be close to
candidate genes than are randomly chosen SNPs. This simul-
taneously demonstrates that background functional knowl-
edge about flowering pathways helps predict which genes are
involved in natural variation and that our GWA results iden-
tify many true associations. Indeed, by assuming that all as-
sociations not involving a priori candidates are false, we see
that the inverse of the enrichment ratio provides a crude up-
per bound for the false-positive rate among the a priori can-
didates (see Supplementary Section 3.2). Continuing the ex-
ample in Fig. 3, no more than 40% of the candidate SNPs
that are significant using both tests are false. This is an up-
per bound because it seems almost certain that many of the
(much larger set of) strong associations that are not close to a
priori candidates will also turn out to be real.

As illustrated in Fig. 3, a priori candidates are over-
represented among strongly associated SNPs regardless of
whether we correct for population structure or not, and the
SNPs identified are not necessarily the same. Enrichment is
clearly greatest among SNPs that are strongly associated us-
ing both methods, however. This is true across the flowering-
related phenotypes (Supplementary Fig. 10), and it is thus

clear that both methods have utility. More stringent thresh-
olds typically yield stronger enrichment, but the variance
also increases because the number of significant genes de-
creases, and there is thus no simple relationship between de-
gree of enrichment and its statistical significance (Supple-
mentary Fig. 11). Results for the other phenotypes are con-
sistent with those for the flowering-related traits, but the can-
didate gene lists are too short for statistical analysis (Supple-
mentary Section 3.1).

An additional problem in identifying true positives was the
existence of complex peaks of association. While many peaks
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Figure 3 – Candidate SNPs are over-represented among strong
associations. GWA analysis of the FT10 phenotype: negative log
p-values from the Wilcoxon test are plotted against those from
EMMA. Points corresponding to SNPs within 20 kb of a candidate
gene are shown in red; the rest are shown in blue. The enrichment
of the former over the latter in different parts of the distribution is
shown.
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were sharply defined and clearly identified a small number
of genes (illustrated in Fig. 2b), others were much more
diffuse, sometimes covering several hundred kb without a
clear center. Fig. 4 shows an example of such a peak, and
also suggests an explanation for their existence. The figure
shows the pattern of association with FLOWERING LOCUS
C (FLC) expression in the chromosomal region containing
the vernalization-response gene FRI. Polymorphisms in FRI
are known to affect flowering time partly through their effect
on expression of FLC 5,15. SNPs in the FRI region should thus
be associated with FLC expression. This is indeed the case,
but rather than a single peak of association centered on FRI,
we have a mountain range covering 500 kb and on the order
of a hundred genes (Fig. 4a).
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Figure 4 – Association with FLC expression at the top of chro-
mosome 4 near FRI. The p-values are from EMMA; the position
of FRI is indicated by a vertical yellow line. a, Single-SNP tests.
b, Col-allele of FRI (blue dot) is added as co-factor in the model.
c, Ler-allele of FRI (red dot) is added as co-factor in the model. d,
Both alleles added as co-factors in the model.

That FRI should be surrounded by a wide peak of associ-
ation is, in itself, not surprising given that the two common
loss-of-function alleles at FRI appear to have been the sub-
ject of recent positive selection16. Indeed, the entire range
collapses if these two alleles are added as co-factors to the
model (Fig. 4d). More surprising is the fact that these two
causal polymorphisms do not have the strongest association
within the region. If we reduce allelic heterogeneity by fac-
toring out one or the other of the two alleles, the significance
of the remaining polymorphism increases, but it is still not the
most significant in the region (Fig. 4b–c). A likely explana-
tion for this is that some SNPs in the region are positively cor-

related (in linkage disequilibrium) with one of the FRI alleles
(because of linkage) and the genomic background (because
of population structure). This dual confounding is sufficient
to make some of these SNPs more strongly associated with
the phenotype than the true positives.

Given the difficulties described above, deciding which as-
sociations are worth following-up must necessarily be highly
subjective. The strongest associations do not always corre-
spond to obvious candidates and are perhaps more interesting
than associations in genes with known function. However,
in the absence of further evidence there is little point in dis-
cussing these associations. Supplementary Table 6 lists some
of the most promising associations: additional a posteriori
candidates for each phenotype are given in Supplementary
Figs. 12–118. The genes listed were selected based on an-
notation from within a 20 kb window surrounding each of the
top 500 most strongly associated SNPs (with minor allele fre-
quency ≥ 0.1 for EMMA), distinguishing between those that
had been considered candidates a priori and those that had
not (the latter category is marked with asterisks in the tables).
As demonstrated in Fig. 3, we expect a high fraction of the as-
sociated a priori candidates to be real. The full data are avail-
able through the project website (http://arabidopsis.usc.edu).

For the flowering-related phenotypes, one of the most strik-
ing findings was the strong correlation between phenotypes
generated under very different growth-chamber and green-
house conditions (Supplementary Table 2 and Supplementary
Fig. 9: note that phenotypes from a field experiment were
much less strongly correlated). As expected given the corre-
lation in phenotypes, there are several regions of association
that are shared across the majority of the flowering pheno-
types (Supplementary Fig. 119. These regions vary consid-
erably in width, and many of them are complex in the sense
of Fig. 4, perhaps as consequence of strong selection. As ex-
pected given the results presented in Fig. 3, several of these
regions coincided with a priori candidates, like FRI 15 and
FLC 17 (see Supplementary Table 6). Another interesting can-
didate is DELAY OF GERMINATION 1 (DOG1)18, which,
though not originally thought to be involved with flowering,
is highly associated with 20 different flowering phenotypes.

Among the other phenotypes, three previously identified
resistance (R) genes polymorphisms were readily identified8,
as were genes known to be involved with variation in sodium
(Na)19 and molydenum (Mo)20 levels (Supplementary Ta-
ble 6). Four genes known to be involved trichome-formation
were strongly associated with both trichome phenotypes: one
of these associations has recently been confirmed21. Finally,
ACD6, which has been experimentally shown to be directly
involved in lesioning22, is detected here as associated with
several lesioning and chlorosis phenotypes. This association
has also recently been experimentally confirmed23.

By the standards of human GWA studies, the sample sizes
used in this study (∼96 or ∼192 lines) are tiny. It may thus
seem surprising that we are able to map anything at all. How-
ever, power depends on the genetic architecture of the traits
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as well, and this works in our favor in at least two ways. First,
we clearly find common alleles of major effect. Although ef-
fect sizes are hard to estimate for the same reason p-values
are, we note, for example, that in 44 phenotypes at least one
of the 50 most strongly associated SNPs with a minor allele
frequency greater than 15% explain more than 20% of the
phenotypic variance (effect-size estimates and allele frequen-
cies for every association are on the project website). This
is very different from human studies, which have generally
identified only polymorphisms of very small phenotypic ef-
fect. The difference is likely due to the fact that, whereas hu-
man studies have focused on traits that are either deleterious
or under strong stabilizing selection (for which a very strong
trade-off between allelic effect and frequency is expected24),
we are working with adaptively important traits. Indeed, hu-
man GWA studies focusing on traits like skin color seem to
yield results more like those presented here25,26.

Second, our study takes full advantage of the fact that we
are working with inbred lines that can be grown in replicate
under controlled conditions, making is possible to study mul-
tiple phenotypes while controlling environmental noise. Par-
tially as a result of this, heritabilities for the traits studied are
generally high, ranging from 42% for aphid number to over
99% for several flowering traits (Supplementary Table 7).

Without these advantages, the amount of genotyping re-
quired would have made a study like the present one pro-
hibitively expensive. That said, there is little doubt that power
in our study is severely limited by sample size. Simulation
studies indicate that our power to detect alleles similar to
those actually detected in the study is often no more than
30–40% using a sample size of 96 (results not shown). In-
creasing the sample size to 192 typically more than doubles
power. Well over 1,000 lines genotyped with our 250k SNP
chip will soon be available: we look forward to seeing associ-
ations from these lines. Efforts are also underway to sequence
the genomes of all these lines (http://www.1001genomes.org)
— this will greatly facilitate follow-up studies, but we do not
expect a massive increase in power as a result of this, because
the SNP density used here seems adequate.

Power also depends on sample composition. In compar-
ison with typical human GWA studies, our sample is char-
acterized by extremely strong population structure. This is
expected given that our global sample was collected partly to
study population structure in A. thaliana4. GWA studies that
utilize different samples (including regional, more homoge-
neous ones) are under way.

The fact that population structure can cause confounding
and lead to an elevated false-positive rate is well known and
the relative advantages of alternative statistical methods to
correct for this have been much debated10,11,12,27. We feel that
the discussion of this phenomenon has often been mislead-
ing, in that population structure is neither necessary nor suffi-
cient for confounding to occur. At least for complex traits, the
problem is better thought of as model mis-specification: when
we carry out GWA analysis using a single SNP at a time (as is

done in this, and most other GWA studies to date), we are in
effect modeling a multi-factorial trait as if it were due to a sin-
gle locus. The polygenic background of the trait is ignored, as
are other unobserved variables. This kind of marginal analy-
sis causes no problem as long as the background is adequately
captured by a variance term (or similar), but if the background
variables are correlated with the SNP included in the model,
bias will result. Population structure will lead to correlations
(i.e., linkage disequilibrium) between unlinked loci, and this
will usually (but not always28) lead to confounding. Posi-
tive correlations are also expected as a result of strong selec-
tion. Both factors are likely to be important in the present
study: for example, it is easy to imagine that plants from
northern Sweden will tend to share cold-adaptive alleles at
many causal loci as a result of selection, and marker alleles
genome-wide as a result of demographic history.

This way of thinking about the problem helps us interpret
many of the results presented above. First, it becomes clear
why GWA works so well for traits that are monogenic, or at
least are mostly due to a single major locus. Examples in
our study include the R gene responses (RPM1, RPS2, and
RPS5), FRI expression (FRI itself), and lesioning (ACD6).
In all cases, GWA yields unambiguous results regardless of
whether we correct for population structure. The reason is
not that there is no confounding in these cases. The prob-
lem that has received so much attention in human genetics
— inflated significance among unlinked, non-causal loci —
is clearly present, but with truly genome-wide coverage this
is not very important, because the true positive is expected to
show the strongest association.

Second, it helps us explain the occurrence of broad, com-
plex regions of association. As exemplified in Fig. 4, these
can arise when SNPs in a region containing a major causative
allele are positively correlated not only with that causative
allele (due to linkage disequilibrium in the narrow sense),
but also with the genomic background (because of popula-
tion structure and/or natural selection). The paradoxical con-
sequence is that instead of a single peak of association cen-
tered on the causative locus, we expect a complex mountain
landscape where many non-causal markers will show stronger
association than the causative allele itself. This makes it dif-
ficult to identify the causal variant within such regions. This
type of confounding does not appear to have been recognized
in the literature, and probably deserves more attention.

Third, it is clear that we should not expect statistical meth-
ods that are designed to take genome-wide patterns of re-
latedness into account10,11,12 to correct for confounding that
is due to selection generating correlations between causal
loci. These types of methods will work only to the extent
that the loci responsible for the genomic background have
allele-frequency distributions that are similar to those of non-
causal loci, which is expected only if selection on each lo-
cus is weak. Accurate estimation of the size of the effects of
the many candidate polymorphisms identified here (includ-
ing distinguishing it from zero) will require either crosses
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or transgenic experiments. Any cross will eliminate long-
range linkage disequilibrium, and short-range linkage dise-
quilibrium can be overcome by choosing appropriate parental
strains. For example, the FRI region in Fig. 4 also con-
tains a promising association at CRYPTIC PRECOCIOUS
(CRP), less than 100 kb away from FRI (see Supplementary
Fig. 127). If polymorphism at FRI is taken into account, CRP
is no longer significantly associated, but this does not neces-
sarily mean that the association is spurious. The two genes
are too closely linked to be separated using standard crosses,
but we can select parental strains that segregate for CRP but
not FRI.

Such crosses are currently being carried out, by us and by
other members of the Arabidopsis community. We also antic-
ipate that many more phenotypes will be generated and added
to our public database. By combining results from GWA,
linkage mapping, and perhaps also intermediate phenotypes
(e.g., expression data), it will be possible to make progress on
deconstructing the regulatory networks that determine natural
variation.

As genotyping and sequencing costs continue to decrease,
GWA studies will become a standard tool for dissecting nat-
ural variation. It is thus important to recognize their limita-
tions. The problems raised here are not unique to A. thaliana.
GWA alone will often not allow accurate estimate of allelic
effects. It must also be remembered that all mapping studies
are biased in the sense that they can only detect alleles that
explain a sufficient fraction of the variation in the mapping
population29. The present study can only detect alleles that
are reasonably common in our global sample. A GWA study
using a more local sample would undoubtedly uncover more
variants that are locally common, and linkage mapping will
identify major polymorphisms that happen to be segregating
in the cross, even if one of the alleles is extremely rare in
natural populations. The “genetic architecture” of a trait de-
pends on the population studied. In order to determine how
genetic architecture affects selection and evolution, we thus
also need to understand the spatial and temporal scales over
which selection is important.

Methods summary

Because slightly different sets were used in different phenotyping
experiments, the total number of lines used was 199 (Supplemen-
tary Table 1). Genotyping was done using standard protocols, and a
combination of SNP calling and imputation algorithms were used
to analyze the results (see Supplementary Section 1). We called
216,130 SNPs, at an estimated error rate of 1.6%. GWA analysis
was done with and without correction for confounding. For the for-
mer, a mixed-model 12 implemented in the program EMMA 13 was
used. For the latter, Wilcoxon’s test was used for ordinal data, and
Fisher’s Exact Test for categorical data. Enrichment for candidate
genes was investigated using lists of a priori candidates identified
from the literature.

Full Methods and any associated references are part of the Sup-
plementary Information available online at www.nature.com/nature.
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